Vertex AI SDK
Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).
Just replace https://REGION-aiplatform.googleapis.com
with LITELLM_PROXY_BASE_URL/vertex_ai
Example Usage
- curl
- Vertex Node.js SDK
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
project: 'your-project-id', // enter your vertex project id
location: 'us-central1', // enter your vertex region
apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
model: 'gemini-1.0-pro'
}, {
customHeaders: {
"x-litellm-api-key": "sk-1234" // Your litellm Virtual Key
}
});
async function generateContent() {
try {
const prompt = {
contents: [{
role: 'user',
parts: [{ text: 'How are you doing today?' }]
}]
};
const response = await model.generateContent(prompt);
console.log('Response:', response);
} catch (error) {
console.error('Error:', error);
}
}
generateContent();
Quick Start
Let's call the Vertex AI /generateContent
endpoint
- Add Vertex AI Credentials to your environment
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
- Start LiteLLM Proxy
litellm
# RUNNING on http://0.0.0.0:4000
- Test it!
Let's call the Google AI Studio token counting endpoint
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
Supported API Endpoints
- Gemini API
- Embeddings API
- Imagen API
- Code Completion API
- Batch prediction API
- Tuning API
- CountTokens API
Authentication to Vertex AI
LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
Pass Vertex Credetials client side to proxy server
Set Vertex AI credentials on proxy server
Usage Examples
Gemini API (Generate Content)
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
Embeddings API
curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-gecko@001:predict \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"content": "gm"}]}'
Imagen API
curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generate-001:predict \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
Count Tokens API
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
Tuning API
Create Fine Tuning Job
curl http://localhost:4000/vertex_ai/tuningJobs \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"baseModel": "gemini-1.0-pro-002",
"supervisedTuningSpec" : {
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
}
}'
Advanced
Pre-requisites
Use this, to avoid giving developers the raw Anthropic API key, but still letting them use Anthropic endpoints.
Use with Virtual Keys
- Setup environment
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
# vertex ai credentials
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
litellm
# RUNNING on http://0.0.0.0:4000
- Generate virtual key
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'x-litellm-api-key: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
Expected Response
{
...
"key": "sk-1234ewknldferwedojwojw"
}
- Test it!
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
Send tags
in request headers
Use this if you wants tags
to be tracked in the LiteLLM DB and on logging callbacks
Pass tags
in request headers as a comma separated list. In the example below the following tags will be tracked
tags: ["vertex-js-sdk", "pass-through-endpoint"]
- curl
- Vertex Node.js SDK
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-H "tags: vertex-js-sdk,pass-through-endpoint" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
project: 'your-project-id', // enter your vertex project id
location: 'us-central1', // enter your vertex region
apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
model: 'gemini-1.0-pro'
}, {
customHeaders: {
"x-litellm-api-key": "sk-1234", // Your litellm Virtual Key
"tags": "vertex-js-sdk,pass-through-endpoint"
}
});
async function generateContent() {
try {
const prompt = {
contents: [{
role: 'user',
parts: [{ text: 'How are you doing today?' }]
}]
};
const response = await model.generateContent(prompt);
console.log('Response:', response);
} catch (error) {
console.error('Error:', error);
}
}
generateContent();